
PRINCIPLES OF OPERATING SYSTEMS

LECTURE 10
Principles of

Operating Systems
CPU SCHEDULING ALGORITHMS

(PRIORITY, ROUND ROBIN, MULTILEVEL QUEUE)

Priority Scheduling

 A priority value (integer) is associated with
each process. Can be based on

 Cost to user
 Importance to user
 Aging
 %CPU time used in last X hours.

 CPU is allocated to process with the highest
priority.

 Preemptive
 Nonpreemptive

Priority Scheduling (cont.)

 SJN is a priority scheme where the priority is
the predicted next CPU burst time.

 Problem
 Starvation!! - Low priority processes may never execute.

 Solution
 Aging - as time progresses increase the priority of the

process.

Round Robin (RR)
 Each process gets a small unit of CPU time

 Time quantum usually 10-100 milliseconds.
 After this time has elapsed, the process is preempted and

added to the end of the ready queue.
 n processes, time quantum = q

 Each process gets 1/n CPU time in chunks of at most q
time units at a time.

 No process waits more than (n-1)q time units.
 Performance
 Time slice q too large – response time poor
 Time slice ()? -- reduces to FIFO behavior
 Time slice q too small - Overhead of context switch is

too expensive. Throughput poor

Example of RR with Time Quantum = 20
 Example: Process Burst Time

P1 53
P2 8
P3 68
P4 24

 The Gantt chart is:

 Waiting time
 P1=(68-20)+(112-88)=72
 P2=(20-0)=20
 P3=(28-0)+(88-48)+(125-108)=85
 P4=(48-0)+(108-68)=88

 Average waiting time = (72+20+85+88)/4=66¼
 Average completion time = (125+28+153+112)/4 = 104½

 Thus, Round-Robin Pros and Cons:
 Better for short jobs, Fair (+)
 Context-switching time adds up for long jobs (-)

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 28 48 68 88 108 112 125 145 153

Comparisons between FCFS and Round Robin

 Assuming zero-cost context-switching time, is RR always better than
FCFS?

 Simple example: 10 jobs, each take 100s of CPU time
RR scheduler quantum of 1s
All jobs start at the same time

 Completion Times:

 Both RR and FCFS finish at the same time
 Average response time is much worse under RR!

 Bad when all jobs same length
 Also: Cache state must be shared between all jobs with RR but can be

devoted to each job with FIFO
 Total time for RR longer even for zero-cost switch!

Job # FIFO RR
1 100 991
2 200 992
… … …
9 900 999
10 1000 1000

Quantum

Completion
Time

Wait
Time

AverageP4P3P2P1

Earlier Example with Different Time Quantum
P2
[8]

P4
[24]

P1
[53]

P3
[68]

0 8 32 85 153

Best FCFS:

6257852284Q = 1

104½11215328125Q = 20

100½8115330137Q = 1

66¼ 88852072Q = 20

31¼885032Best FCFS

121¾14568153121Worst FCFS

69½32153885Best FCFS
83½121014568Worst FCFS

95½8015316133Q = 8

57¼5685880Q = 8

99½9215318135Q = 10

99½8215328135Q = 5

61¼68851082Q = 10

61¼58852082Q = 5

Round Robin Example
Time Quantum = 20 Initially, UNIX timeslice (q) = 1 sec

 Worked OK when UNIX was used by
few (1-2) people.

 What if three compilations going on? 3
seconds to echo each keystroke!

 In practice, need to balance short-job
performance and long-job throughput
 q must be large wrt context switch, o/w

overhead is too high
 Typical time slice today is between 10ms –

100ms
 Typical context switching overhead is 0.1 – 1

ms
 Roughly 1% overhead due to context switching

 Another Heuristic - 70 – 80% of jobs
block within timeslice

Process Burst Time
P1 53
P2 17
P3 68
P4 24

0

P1 P4P3

Gantt Chart for Schedule

P1P2

20

P3 P3 P3P4 P1

37 57 77 97 117 121 134 154 162
Typically, higher average turnaround time than SRTF,
but better response

Example to illustrate benefits of SRTF

 Three jobs:
 A,B: both CPU bound, run for week

C: I/O bound, loop 1ms CPU, 9ms disk I/O
 If only one at a time, C uses 90% of the disk, A or B

could use 100% of the CPU
 With FIFO:

 Once A or B get in, keep CPU for two weeks
 What about RR or SRTF?

 Easier to see with a timeline

C

C’s
I/O

C’s
I/O

C’s
I/O

A or B

SRTF Example continued:

C’s
I/O

CABAB… C

C’s
I/O

RR 1ms time slice

C’s
I/O

C’s
I/O

CA BC

RR 100ms time slice

C’s
I/O

AC

C’s
I/O

AA

SRTF

Disk Utilization:
~90% but lots of wakeups!

Disk Utilization:
90%

Disk Utilization:
9/201 ~ 4.5%

Multilevel Queue
 Another method for exploiting past behavior
 Ready Queue partitioned into separate queues

 Each queue has a priority; Higher priority queues often considered
“foreground” tasks

 Eg. system processes, foreground (interactive), background (batch), ….

 Each queue has its own scheduling algorithm
 Example: foreground (RR), background(FCFS)
 Sometimes multiple RR priorities with quantum increasing exponentially

(highest:1ms, next:2ms, next: 4ms, etc)

 Processes assigned to one queue permanently.
 Scheduling must be done between the queues

 Fixed priority - serve all from foreground, then from background.
 Time slice - Each queue gets some CPU time that it schedules - e.g. 80%

foreground(RR), 20% background (FCFS)

Multilevel Queues

Background

Scheduling Fairness
 What about fairness?

 Strict fixed-priority scheduling between queues is unfair (run highest,
then next, etc):
 long running jobs may never get CPU
 In Multics, shut down machine, found 10-year-old job

 Must give long-running jobs a fraction of the CPU even when there
are shorter jobs to run

 Tradeoff: fairness gained by hurting avg response time!
 How to implement fairness?

 Could give each queue some fraction of the CPU
 What if one long-running job and 100 short-running ones?
 Like express lanes in a supermarket—sometimes express lanes get so

long, get better service by going into one of the other lines
 Could increase priority of jobs that don’t get service

 What is done in UNIX
 This is ad hoc—what rate should you increase priorities?
 And, as system gets overloaded, no job gets CPU time, so everyone

increases in priorityInteractive jobs suffer

Multilevel Feedback Queue

 Multilevel Queue with priorities
 A process can move between the queues.

 Aging can be implemented this way.
 Adjust each job’s priority as follows (details vary)

 Job starts in highest priority queue
 If timeout expires, drop one level
 If timeout doesn’t expire, push up one level (or to top)

 Parameters for a multilevel feedback queue scheduler:
 number of queues.
 scheduling algorithm for each queue.
 method used to determine when to upgrade a process.
 method used to determine when to demote a process.
 method used to determine which queue a process will enter when that

process needs service.

Multilevel Feedback Queues

 Example: Three Queues -
 Q0 - time quantum 8 milliseconds (RR)
 Q1 - time quantum 16 milliseconds (RR)
 Q2 - FCFS

 Scheduling
 New job enters Q0 - When it gains CPU, it receives 8

milliseconds. If job does not finish, move it to Q1.
 At Q1, when job gains CPU, it receives 16 more milliseconds. If

job does not complete, it is preempted and moved to queue Q2.
 Countermeasure: user action that can foil intent of the

OS designer
 For multilevel feedback, put in a bunch of meaningless I/O to

keep job’s priority high
 Of course, if everyone did this, wouldn’t work!

Multilevel Feedback Queues

Multiple-Processor Scheduling

 CPU scheduling becomes more complex
when multiple CPUs are available.

 Have one ready queue accessed by each CPU.
 Self scheduled - each CPU dispatches a job from ready Q
 Master-Slave - one CPU schedules the other CPUs

 Homogeneous processors within
multiprocessor.

 Permits Load Sharing

 Asymmetric multiprocessing
 only 1 CPU runs kernel, others run user programs
 alleviates need for data sharing

Real-Time Scheduling

 Hard Real-time Computing -
 required to complete a critical task within a guaranteed amount of time.

 Soft Real-time Computing -
 requires that critical processes receive priority over less fortunate ones.

 Types of real-time Schedulers
 Periodic Schedulers - Fixed Arrival Rate

 E.g. Rate monotonic (RM). Tasks are periodic. Policy is shortest-
period-first, so it always runs the ready task with shortest period.

 Aperiodic Schedulers - Variable Arrival Rate
 E.g. Earliest deadline (EDF). This algorithm schedules the task with

closer deadline first

